
RADAR: A Lightweight Tool for Requirements and
Architecture Decision Analysis

Saheed A. Busari, Emmanuel Letier
Department of Computer Science

University College London
London, United Kingdom

{saheed.busari.13, e.letier}@ucl.ac.uk

Abstract—Uncertainty and conflicting stakeholders’ objectives
make many requirements and architecture decisions particularly
hard. Quantitative probabilistic models allow software architects
to analyse such decisions using stochastic simulation and multi-
objective optimisation, but the difficulty of elaborating the models
is an obstacle to the wider adoption of such techniques. To reduce
this obstacle, this paper presents a novel modelling language and
analysis tool, called RADAR, intended to facilitate requirements
and architecture decision analysis. The language has relations
to quantitative AND/OR goal models used in requirements
engineering and to feature models used in software product
lines. However, it simplifies such models to a minimum set of
language constructs essential for decision analysis. The paper
presents RADAR’s modelling language, automated support for
decision analysis, and evaluates its application to four real-world
examples.

Keywords-Decision Analysis, Requirements Engineering, Soft-
ware Architecture, Goal Modelling, Monte-Carlo Simulation,
Multi-Objective Optimisation, Search-Based Software Engineer-
ing, Expected Value of Information

I. INTRODUCTION

Designing software systems involves deciding what soft-
ware functions should be provided, what levels of quality
requirements should be met, and what software architecture to
use to satisfy these functional and quality requirements. Such
requirements and architecture decisions often have critical
impacts on the software development costs, duration, and the
system’s ability to satisfy stakeholders’ goals [1], [2].

Many software requirements and architecture decisions have
to deal with multiple conflicting objectives and are confronted
with high levels of uncertainty about the possible impacts
of decision choices [3]. Relying on intuitions alone for such
critical and complex decisions is not ideal. Intuitive decisions,
even by experts, are subject to many cognitive biases and
errors [4]. Some of these biases have been shown to happen
in software engineering contexts [5].

Using quantitative decision models is therefore a promising
approach to improve software requirements and architectural
decisions making. Such models help to clarify the decision
problem and allow software architects to apply stochastic sim-
ulation and multi-objective optimisation techniques to analyse
the decisions [3], [6].

One of the biggest obstacles to such quantitative methods,
however, is the “modelling problem”; the difficulty of elab-
orating a quantitative decision model that adequately defines

the stakeholders’ goals and correctly predicts the impacts of
decisions on these goals.

Many requirements and architecture decision methods avoid
this problem by relying on generic decision objectives and
predefined model equations. For example, the EVOLVE re-
lease planning method [7], the CBAM architecture decision
method [8], [9], and many search-based methods for require-
ments selection [10] rely on predefined equations (generally
weighted sums) to assign ’cost’ and ’value’ scores to alter-
native designs. The cost and value scores in these methods
usually represent abstract (non verifiable) quantities rather
than financial metrics expressed in monetary units (e.g. in
Dollars or Euros). Using generic decision models simplifies the
application of these methods, but the generic models generally
fail to capture the stakeholders’ real objectives and be valid
models of the impacts of decisions on these objectives [11].
If the decision model does not reflect the decision-maker’s
objectives, it is unlikely to provide useful guidance. We
therefore need decision methods that support the elaboration
and analysis of problem-specific decision models.

Goal-oriented requirements engineering provides systematic
methods to guide the elaboration of problem-specific require-
ments and architecture decision models [12]. The KAOS goal
modelling framework allows one to define stakeholders’ goals
and their relation to software requirements and domain as-
sumptions in precise terms [1], [13]. Quantitative goal models
extend KAOS goal models by describing quantitatively the
impacts of alternative requirements and architecture designs
on measurable stakeholders’ goals [14]. Stochastic simulation
and multi-objective optimisation can then be used to analyse
decisions in quantitative goal models [6]. Currently, however,
such analysis requires the engineer to manually develop the
model simulation in a general programming language. Pre-
vious work used MATLAB and R [6], [14]. The complexity
of the KAOS goal modelling framework and its quantitative
extension may also hinder their use in practice.

Our objective is to develop a lightweight decision mod-
elling language and automated analysis tool for requirements
and architecture decision analysis. The result is RADAR, the
Requirements and Architecture Decision AnalyseR. RADAR’s
modelling language is a simplified form of quantitative goal
models designed to be similar to simple equations that soft-
ware architects use for back-of-the-envelope calculations (i.e.

rough, imprecise calculations) [2]. RADAR, however, provides
sophisticated analysis that cannot be performed through back-
of-the-envelope calculations: it allows analysing uncertainty
through Monte-Carlo simulations, shortlisting Pareto-optimal
solutions through multi-objective optimisation, and computing
expected value of information that can be used to decide
whether to seek more information or perform a more detailed
analysis before making a decision [3].

RADAR is designed to support the requirements and ar-
chitecture decision method introduced in previous work [3].
In previous work, applying this method requires modellers
to develop a decision model and its simulation in the R
programming language. This impairs model readability and
forces modellers to consider implementation issues instead of
focussing solely on the conceptual decision problem. RADAR’s
novelty with respect to that method are: (i) its modelling lan-
guage that frees software engineers from having to implement
their decision models in R or another general programming
language (Section IV-A); (ii) the automated generation of
AND/OR refinement graphs and decision graphs from the
model’s equations (Sections IV-B and IV-D); (ii) the automated
inference of decision dependencies (Section IV-D); (iv) the
minimisation of the optimisation problem’s search space by
automatically inferring the set of minimal and complete solu-
tions associated to a RADAR model (Section IV-C); and (v) the
implementation of techniques for simulating and optimising
the model’s decisions and for computing the expected value
of total and partial perfect information (Section IV-E). The
decision method itself has not changed.

II. A MOTIVATING EXAMPLE

To motivate our approach and illustrate our modelling
language and tool, we will use the example of the design of
a plastic card fraud detection system. This example is based
on our previous experience of analysing the scalability of a
commercial financial fraud detection system [15], [16].

Plastic card fraud detection systems are used by banks to
detect when plastic card accounts may have been compromised
by fraudsters who are using the account to steal funds. Design
decisions for such systems include:
• the processing type that can be continuous or batch;

continuous processing analyses transactions individually
as they arrive, whereas batch processing performs an
overnight analysis of the transactions that occurred during
the day;

• the fraud detection method which can be a two-class
supervised classification method in which a classifier
is trained from samples of past fraudulent and non-
fraudulent transactions, or a non-statistical rule-based
method that flags transactions matching configurations
known to be high risk;

• if the classifier fraud detection method is chosen, the
alert threshold defines some threshold above which the
classifer should flag a transaction as suspect. A low alert
threshold means more alerts will be generated and thus
a higher ratio of false alerts.

• the blocking policy that can include blocking an account
as soon as the fraud detection method flags a transaction
as suspected fraud, or only blocking the account after the
suspected fraud has been confirmed by human investiga-
tors.

These decisions impact the number of alerts generated and
the speed at which compromised accounts are blocked, which
ultimately affects how much effort the bank needs to devote
to manually investigate alerts and how much money it loses
to fraud. The optimisation of plastic card fraud detection
systems typically include two conflicting concerns: minimising
financial loss, and minimising manual investigation costs [17].

Deciding what combination of processing type, fraud de-
tection method, alert threshold and blocking policy to use is
not trivial. The problem is complicated by uncertainty about
domain quantities, such as the ratio of compromised accounts,
uncertainty about the impact of decisions on future financial
loss and investigation costs, and the conflicting nature of these
two concerns.

III. RADAR: AN OVERVIEW

Before defining RADAR in detail, which we do in Sec-
tion IV, we first illustrate the application of RADAR on a
complete, simple, but illustrative example. The purposes are
to give a high-level overview of the language and to provide
background on our decision analysis method [3].

A. Developing a decision model

Imagine having to perform a cost-benefit analysis for de-
ciding whether or not to refactor the architecture of an exist-
ing application. With the current architecture, the application
generates relatively predictable benefits. Refactoring creates
the possibility of generating much higher benefits, but the
refactoring costs and benefits are highly uncertain.

A RADAR model for this decision problem might look like
this:

Objective Max ENB = EV(NB);
Objective Min LP = Pr(NB < 0);
NB = Benefit − Cost;
Cost = decision(“Architecture choice”){

“As-is” : deterministic(0);
“Refactoring” : normalCI(1, 5);

}
Benefit = decision(“Architecture choice”){

“As-is” : normalCI(0.9, 1.1);
“Refactoring” : normalCI(1, 9);

}

The language keywords are in bold. The first two lines
define the optimisation objectives: maximising expected net
benefit (ENB) and minimising loss probability (LP). The
function EV denotes the expected value (or mean) of a
random variable and Pr denotes the probability of a Boolean
expression. The model’s third line defines net benefit (NB) as
the difference between benefit and cost.

Architecture choice

Benefit

Benefit[As-is]Benefit[Refactoring]

Architecture choice

Cost

Cost[As-is] Cost[Refactoring]

NB

ENB LP

Fig. 1. AND/OR refinement graph for the cost-benefit analysis example

The next four lines state that cost depends on the archi-
tectural choice. If the choice is to keep the as-is architecture,
we assume the cost to be zero. The deterministic keyword
means we believe this cost to be certain. If the choice is
to refactor, we believe the cost has a 90% chance of being
between £1m and £5m. The expression normalCI(1, 5)
means the cost follows a normal distribution whose 90%
confidence interval is between 1 and 5. Similarly, the last four
lines state that benefit depends on the architecture choice and
records our beliefs about the benefit’s likelihood for the as-is
and refactored architecture.

Probabilities in our approach are Bayesian; probability
distributions denote the decision makers’ beliefs about the
likelihood of uncertain quantities and events. These beliefs
can be informed by subjective judgements, objective data, or
a combination of both. Bayesian methods typically start with
probability distributions informed by subjective judgements
alone, then update the distributions (using Bayes rule) as new
data and information becomes available [18], [19].

Reliable methods exist for eliciting a person’s beliefs about
uncertain quantities or events, and modelling these beliefs
as probability distributions [20]. A recommended simple ap-
proach consists in eliciting 90% confidence interval as used
above [21]. For these elicitation methods to be reliable, people
providing estimations have to be ‘calibrated’ on a set of
estimation exercises intended to mitigate their under- or over-
confidence biases.

To help visualising the model structure, RADAR automat-
ically generates the AND/OR refinement graph and decision
graph of Fig. 1 and 2. RADAR AND/OR refinement graphs
are equivalent to quality variables AND/OR refinement graphs
in quantitative goal models [14]. In RADAR, rectangles denote
objectives, rounded rectangles denote random variables (i.e.
variables characterized by a probability distribution rather than
a single value), a black dot denotes an AND-refinement, and an

Architecture choice

As-is Refactoring

Fig. 2. Decisions dependency graph for the cost-benefit analysis example

octagon denotes an OR-refinement. An arrow from a variable
to an objective denotes that the objective refers to that variable.
The leaf nodes in the AND/OR refinement graphs are the
model parameters. Their values are defined by probability
distributions. In our example, Fig. 1 shows that the objectives
ENB and LP both refer to NB, that NB depends on Benefit
and Cost (an AND-refinement), while Benefit depends on
Benefit[As-is] or Benefit[Refactoring] based on which option
is chosen (an OR-refinement).

RADAR decision graphs play a similar role to feature models
in software product lines [22]; they help us visualise the model
decisions, their options and possible decision dependencies. In
our refactoring model, the decision graph is extremely simple
because the model includes a single decision and no decision
dependency. Fig. 6 shows a more interesting decision graph for
our fraud detection example. Octagons denote decisions; ovals
denote options; the arrows from a decision to options denote
all options available for that decision; an arrow from an option
to a decision denotes that the decision has to be made only
for system designs where that option has been selected. The
options in a decision are mutually exclusive.

B. Analysing decision models

RADAR supports a decision analysis method that consists
in first shortlisting a set of Pareto-optimal solutions through
simulation and multi-objective optimisation, then computing
the expected value of information to evaluate whether to
seek additional information before making a decision between
the shortlisted candidates [3]. This section provides a brief
overview of this method and how RADAR supports it.

Fig. 3 shows RADAR’s analysis results for our small refac-
toring model. The first part shows the results of RADAR’s op-
timisation analysis. It lists the optimisation objectives and the
objective values for the two architecture choices: refactoring
has an expected net benefit of £2m, but a loss probability of
23%, whereas keeping the current architecture has an expected
net benefit of £1m but the loss probability is zero.

In this small example, we have only two solutions to
choose from. Larger problems such as the fraud detection
problem of Section II have a larger number of solutions.
Before displaying the optimisation analysis results, RADAR
shortlists the set of Pareto-optimal solutions and presents only
those to the decision makers. A solution is Pareto-optimal
if there is no other solution that is better on all objectives
simultaneously [3]. In our small example, a solution is thus
Pareto-optimal if no other solution has both higher expected
net benefit and lower loss probability. Here, both solutions are

Optimisation Analysis

Objective: Max ENB
Objective: Min LP

Architecture choice ENB LP
Refactoring 2 0.23
As-is 1 0

Information Value Analysis

Objective: Max ENB
EVTPI: 0.64

Parameter EVPPI
Benefit[Refactoring] 0.54
Cost[Refactoring] 0.14
Benefit[As-is] 0
Cost[As-is] 0

Fig. 3. Analysis results for the cost-benefit analysis model (ENB = Expected
Net Benefit; LP = Loss Probability; EVTPI = Expected Value of Total Perfect
Information; EVPPI = Expected Value of Partial Perfect Information).

Pareto-optimal because none of them is better than the other
on both objectives.

The second part of Fig. 3 shows the result of information
value analysis [3], [23]. In many decision situations, we
may be able to collect and analyse additional data to reduce
our uncertainty before making a decision. Additional data
collection and analysis, however, are worthwhile only if their
cost is lower than the value of the new information they bring.

Information value analysis gives upper bounds on the value
of additional data collection and analysis to our decision
problem. The expected value of total perfect information
(EVTPI) is a theoretical measure of the expected gain in
some objective value (usually, maximising net benefit) that
would result from having access to perfect information about
all model parameters, that is from having access to an oracle
who could tell us the exact values of all model parameters. The
EVTPI gives an upper bound to the information that would
result from additional data collection and analysis. Similarly,
the expected value of partial perfect information (EVPPI)
is the expected gain in some objective value resulting from
having access to perfect information about a single model
parameter. It gives an upper bound to how much we should
spend to reduce uncertainty about that model parameter. We
refer readers to previous publications for more formal and
detailed explanation of these concepts [3], [23], [24], [25].

Analysing the expected value of information is important
because it helps mitigate a measurement bias, known as
measurement inversion, where decision makers would spend
sometimes considerable efforts measuring quantities with low
or even zero information values but disregard measuring quan-
tities with high information value [21]. This bias has notably
been observed in a study of 20 IT project business cases [26].
This study cites the effort spent by an organisation conducting

detailed measurement of software development productivity as
an example of measurement with very low information value,
whereas quantities with high information value that are not
measured at all are typically those related to benefits that are
wrongly perceived to be intangible.

In our example, we evaluate information value with respect
to maximising expected net benefit. The EVTPI is £0.64
million. Spending a small fraction of that amount on reducing
uncertainty could have high value. The EVPPI values show
that reducing uncertainty about the benefits of refactoring
has by far the highest value (£0.54m). By contrast, reducing
uncertainty about refactoring cost has little value and reducing
uncertainty about the current architecture has no value.

One way to reduce uncertainty about the benefits of refactor-
ing would be to elaborate a finer-grained decision model by
refining the Benefit variable into lower-level variables (e.g.
customers retention and acquisition rates, savings in software
maintenance costs) and potentially identifying finer-grained
architecture decisions corresponding to alternative ways to
refactor the existing architecture. This would trigger a new
decision analysis. The cycle of model refinement and analysis
would eventually stop when the remaining expected value of
perfect information is too low to justify further analysis.

IV. RADAR LANGUAGE AND ANALYSIS

Now that we have a general overview, we introduce the
modelling language and automated analysis in more detail.

A. The Modelling Language

A RADAR model is composed of a set of objective defini-
tions and variable definitions.

1) Objective Definition: An objective definition has the
form

Objective (Min | Max) Name = Statistic(X)

where Name is the objective name, Min or Max declares
whether the objective function should be minimised or max-
imised, and Statistic(X) is a statistical measure on a single
random variable X. Statistical measures include:

• EV(X) denoting the expected value of X;
• Pr(X ∼ x) denoting the probability that X ∼ x where
∼ is ≤, <, =, >, or ≥;

• percentile(X, i) denoting the ith percentile of X, i.e.
the value x such that Pr(X ≤ x) = i.

We saw examples of the use of first two types of statistics
in the refactoring model of Section III. Percentiles are useful
statistics for measuring risk. For example, in the refactoring
example, the Value at Risk (VaR) can be defined as:

Objective Min VaR = percentile(NB, 5)

In our example, the VaR of refactoring is −2.6, i.e. the
chance of losing more than £2.6m is less than 5%.

2) Variable definition: A variable definition is either an
AND-refinement, an OR-refinement, or a parameter estima-
tion.

An And-refinement has the form

X = F (X1, ..., Xn)

where X is a variable and F (X1, ..., Xn) is an arithmetic or
Boolean expression involving variables X1, ..., Xn. The equa-
tion defining NB in our cost-benefit analysis is an example of
And-Refinement where NB is defined as Benefit − Cost.

An OR-refinement has the form

X = decision(label){
Option1 : Expression1;
...
Optionn: Expressionn;

}

where label is the decision name, Optioni are option names,
and Expressioni is an AND-refinement or parameter estima-
tion defining the value of X if Optioni is selected.

The definitions of Cost and Benefit in the refactoring model
are examples of OR-refinement.

Consider also Fig. 4 that shows all OR-refinements in
the fraud detection model. The first OR-refinement states
that NbrFraudPerAccountBeforeBlocked depends on the
blocking policy; the second that NbrFraudBeforeDetection
depends on the processing type; etc.

Multiple OR-refinements can refer to the same decision. For
example, in Fig 4, both variables ContinuousTrueAlertRate
and BatchTrueAlertRate depend on the fraud detection
method.

A parameter estimation has the form:

X = ProbabilityDistribution

where ProbabilityDisribution defines a probability distribution
for the variable X. Probability distributions include:
• uniform(min, max) denoting the uniform distribution

between values min and max;
• triangular(min, mode, max) denoting the triangular

distribution with lower limit min, upper limit max and
mode mode;

• normalCI(lower, upper) denoting a normal distribution
characterised by the lower and upper bounds of its 90%
confidence interval (i.e. lower is the 5th percentile and
upper the 95th percentile);

• deterministic(x) denoting that the variable has the
certain value x.

For example, the number of accounts in our fraud detection
model is defined by the following parameter estimation:

NbrAccounts = normalCI(0.9× 106, 1.1× 106);

A parameter estimation can be used in an OR-refinement
to define the value of a variable X when Optioni is selected,
thereby introducing a parameter X[Optioni]. For example, in
the cost-benefit analysis model, the OR-refinement for Cost
introduces the parameters Cost[As-is] and Cost[Refactoring].

B. AND/OR Refinement Graph

The equations in a RADAR model create an AND/OR re-
finement graph between variables. An AND-refinement relates
a variable to the set of variables involved in its definition. An
OR-refinement relates a variable to the set of AND-refinement
or parameter estimations involved in the OR-refinement defi-
nition. As an example, Fig. 5 shows the AND/OR refinement
graphs for the fraud detection model fragments in Fig. 4.

The AND/OR refinement graph of a model must be acyclic.
The tool generates an error if it detects a circular dependency.

By showing the variable dependencies, the AND/OR refine-
ment graph helps modellers to review and validate the model
structure with other stakeholders. Such AND/OR graphs are
commonly used in goal-oriented requirements engineering to
communicate and validate traceability links between technical
software characteristics (e.g. the classifier’s true alert rate) and
high-level stakeholders’ concerns (e.g. financial loss due to
fraud) [1].

C. The Design Space

A model’s OR-refinement equations introduce a set of
decisions and options. Selecting an option for a particular
decision replaces all OR-refinements that refer to this decision
by AND-refinements or parameters estimation corresponding
to the selected option. For example, selecting the ”block first”
option for the ”decision policy” option in Fig. 4 replaces the
OR-refinement for NbrFraudPerAccountBeforeBlocked by
the AND-refinement corresponding to the ”block first” option,
i.e. NbrFraudPerAccountBeforeBlocked = NbrFraudBe-
foreDetection. This idea provides the basis for how we define
the set of valid solutions for a RADAR decision model.
Definition (Solution Space). Let D be the set of all decisions
declared in the model, O(d) be the set of options associated
with decision d ∈ D, and O = ∪d∈DO(d) be the set of all
options. We define a solution s to be a mapping from decisions
to options s : D → O such that s(d) ∈ O(d). A solution is
total if it contains an option for every decision in D (i.e. it is a
total function); otherwise the solution is said to be partial. We
define the solution space to be the set of all total solutions.

For example, s1 = {(blocking policy, block first), (pro-
cessing type, continuous), (fraud detection method, clas-
sifier), (alert threshold, high)} is a total solution for the
fraud detection model, whereas s2 = {(blocking policy,
block first), (processing type, continuous), (fraud detection
method, rule-based)} is a partial solution because it contains
no alert threshold decision. For any model, the size of the
solution space is

∏
d∈D |O(d)|. For example, the size of the so-

lution space for the fraud detection model is 2×2×2×3 = 24.
Applying a solution s to a RADAR model replaces OR-

refinements with AND-refinements corresponding to the se-
lected options for all decisions defined in s.
Definition (Design Space). A solution s is complete if apply-
ing the solution results in a model that has no OR-refinement.
A solution s is minimal if no subset of s is complete. The
design space of a RADAR model is the set of all its minimal
and complete solutions.

NbrFraudPerAccountBeforeBlocked = decision(“blocking policy”){
“block first” : NbrFraudBeforeDetection;
“investigate first” : NbrFraudBeforeDetection + NbrFraudDuringInvestigation;

}
NbrFraudBeforeDetection = decision(“processing type”){

“continuous” : 1 / ContinuousTrueAlertRate;
“batch” : NbrFraudsPerCompromisedAccountPerDay / BatchTrueAlertRate ;

}
ContinuousTrueAlertRate = decision(“fraud detection method”){

“classifier” : ContinuousAlertThreshold;
“rule-based” : deterministic(0,75)

}
BatchTrueAlertRate = decision(“fraud detection method”){

“classifier” : BatchAlertThreshold;
“rule-based” : deterministic(0,80);

}
ContinuousAlertThreshold = decision(“alert threshold”){

“high” : deterministic(0.9);
“medium” : deterministic(0,8);
“low” : deterministic(0,7);

}
BatchAlertThreshold = decision(“alert threshold”){

“high” : deterministic(0.95);
“medium” : deterministic(0,85);
“low” : deterministic(0,75);

}

Fig. 4. Fragment of RADAR model showing all OR-refinements in the financial fraud detection system

A total solution is always complete, but not all complete
solutions are total. For example, s2 is partial and complete; it is
complete because selecting the ”rule-based” option as a fraud
detection method replaces the OR-refinement by an AND-
refinement whose subgraph contains no further OR-refinement
(our model does not include an alert threshold decision for the
rule-based fraud detection method). Obviously, not all partial
solutions are complete. For example, the partial solution s3 =
{(blocking policy, block first)} is not complete.

Not all complete solutions are minimal. For example, the
solution s4 = {(blocking policy, block first), (processing
type, continuous), (fraud detection method, rule-based),
(alert threshold, high)} is not minimal because its subset s2
is complete.

The design space of a RADAR model defines the set of
all valid solutions to be considered during optimisation. Our
tool generates the design space of a model by recursion over
the acyclic AND/OR refinement graph by merging the set of
solutions associated to a variable subgraph. For any model,
the size of the design space is always smaller or equal to the
size of the solution space. For the fraud detection model, the
design space contains 16 solutions.

Note that our decision-based solution encoding is different
from the alternative option-based encoding commonly used

in search-based software engineering, notably for the problem
of selecting optimal designs in software product lines [27],
[28], [29]. In the option-based encoding, solutions are encoded
as a mapping s : O → Boolean such that for each option
o ∈ O, s(o) denotes whether o is selected or not. Additional
constraints must then be added to remove invalid solutions
such as those that select two mutually exclusive options.
With an option-based encoding, the solution space would
include 2|O| solutions against

∏
d∈D |O(d)| for our decision-

based encoding. In the fraud detection model, an option-based
encoding would have resulted in 29 = 512 total solutions
instead of 24. For a slightly larger model including 10 de-
cisions with 3 options each, an option-based encoding would
include 23∗10 ≈ 109 total solutions, whereas the decision-
based encoding would have only 310 ≈ 59, 000 solutions,
i.e. 0.005% of the number of solutions in the option-based
encoding. The benefits of a decision-based encoding over an
option-based encoding are thus enormous: the solution space
is much smaller and it does not need additional constraints to
remove invalid solutions.

D. The Decision Graph
The equations in a RADAR model may create dependencies

between decisions. For example, in the fraud detection model,
the “alert threshold” decision is dependent on the selection

threshold level

ContinuousAlertThreshold

ContinuousAlertThreshold[high]ContinuousAlertThreshold[medium] ContinuousAlertThreshold[low]

fraud detection method

ContinuousTrueAlertRate

ContinuousTrueAlertRate[rule-based]

processing type

NbrFraudBeforeDetection

threshold level

BatchAlertThreshold

BatchAlertThreshold[high] BatchAlertThreshold[medium] BatchAlertThreshold[low]

fraud detection method

BatchTrueAlertRate

BatchTrueAlertRate[rule-based]

NbrFraudPerCompromisedAccountPerDay

blocking policy

NbrFraudPerAccountBeforeBlocked

NbrFraudDuringInvestigation

Fig. 5. AND/OR Refinement Graph for the Financial Fraud Detection System

of the “classifier” option in the “fraud detection method”
decision.
Definition (Decision Dependency). A decision d1 is depen-
dent on the selection of option x in decision d0 if, and
only if, for all solutions s in the design space, if d1 is
defined then the selected option for decision d0 is x; formally:
∀s ∈ DesignSpace | d1 ∈ dom(s)⇒ s(d0) = x, where dom(s)
denotes the domain of the function s, i.e. the set of decisions
that have a mapping in s.

Our tool infers decision dependencies by first generating the
design space, then checking for dependency between every
pair of decisions. To visualise such dependencies, the tool
generates a decision diagram showing all decisions, their
options, and dependencies between decisions and options. The
decision diagram for the fraud detection model is shown in
Fig. 6. These diagrams play a similar role to that of feature
diagrams in software product lines [22]: they help us visualise
a potentially large design space in terms of a smaller set of
decisions and options.

E. Analysing the Model

As illustrated in Section III, the analysis of a RADAR
model consists in shortlising its Pareto-optimal solutions and
evaluating the expected value of total and partial perfect
information.

Performing this analysis involves three components:

blocking policy

block first investigage first

processing type

continuous batch

fraud detection method

classifier rule-based

threshold level

high medium low

Fig. 6. Decision Graph for the Financial Fraud Detection System

1) The Simulator: The Simulator provides two related
functions: (i) given a candidate solution s, it returns the
values of all objectives for s; (ii) given a set S of candidate
solutions and a variable X , it returns a simulation vector X
that contains simulations of X and a simulation matrix P
that contains the simulations for all model parameters used
to compute X . The first function is used by the Optimiser,
the second by the Information Value Analyser. Internally,
both functions use the same Monte-Carlo simulation where
simulations of variables are generated by recursion through
the AND/OR refinement equations by selecting the appropriate
decision options through OR-refinements. The number N of
simulations is set by the user and has a default value of 104.
Our implementation ensures that, in a given simulation run, all

solutions are evaluated using the same parameter simulation
data, which is needed to ensure correctness.

2) The Optimiser: given a RADAR model, the Optimiser
returns the set of Pareto-optimal solutions together with their
objective values. Our implementation identifies the exact set
of Pareto-optimal solutions through an exhaustive search of
the design space.

As will be shown in Section V, such exhaustive analysis is
efficient on all problems we have analysed so far. If future
problems cannot be solved through exhaustive search, our
architecture supports replacing the exhaustive search strategy
by genetic multi-objective optimisation algorithms, such as
such as NSGA2 [30], that can deal with larger design spaces
but do not guarantee to return the exact set of Pareto-optimal
solutions.

3) The Information Value Analyser: given an objective
to be considered for information value analysis (typically
maximising net benefit) and a subset of solutions from the
design space (typically the set of Pareto-optimal solutions),
the Information Value Analyser returns the EVTPI and the
EVPPI of all non-deterministic model parameters with respect
to the given objective and set of solutions. Our implementation
relies on existing algorithms. EVTPI is computed from the
matrix NB that contains simulations of the objective variable
for each solution in the given subset (NB[i, j] is the value
of NB in simulation i for solution j). EVPPI of a model
parameter x is computed using a recent efficient algorithm that
relies only on NB and the vector x containing the simulations
of parameter x [25].

For scalability reasons, we perform information value anal-
ysis by considering shortlisted solutions only, rather than
the whole design space. Considering the whole design space
would involve generating a matrix NB of size N ×M where
N is the number of simulations, typically 104, and M is
the size of the design space which could be up to 59000
for an average problems with 10 decisions having 3 options
each. Matrices of such size become difficult to manipulate in
memory. Computing expected information value for shortlisted
solutions is more efficient (the number of rows M of the
matrix NB is the number of shortlisted solutions) but may
generate slightly lower EVTPI and EVPPI values than by
considering the whole design space. Our approach amounts
to deciding a priori that non-shortlisted solutions will not be
considered for further analysis.

Verifiability. RADAR can be downloaded from the tool’s
webpage (https://ucl-badass.github.io/radar/). The tool is im-
plemented in Java. It uses ANTLR to generate the model
parser [31] and produces diagrams in the DOT format that can
be visualised and converted to other formats using Graphviz
[32]. All models discussed in the paper are available from
the tool’s webpage. Readers can review the models, replicate
their analysis, and perform additional analysis by modifying
the models or creating their own.

V. EVALUATION

Empirically evaluating a novel modelling language and deci-
sion analysis techniques is notoriously difficult. Our evaluation
focuses on showing that the RADAR modelling language and
analysis techniques are applicable to real-world problems. Our
discussion about their usefulness is, at this stage, speculative.

A. Applicability

To show that our language and tool are applicable to real-
world problems, we have applied them to four representative
real-world examples: the design of a financial fraud detection
system introduced earlier [15], [16], [17]; decisions about
system security policies [33], [34], the design of a system
to coordinate the deployment of emergency response teams
[3], [35], [36], and the design a system to collect and process
satellite images [8], [9], [37]. The last two problems have
been used previously in the software engineering community
to illustrate architecture decision methods [3], [8], [9], [36].

Table I shows the problem size and analysis run-time for
each model analysed with N = 104 simulations. Small models
such as the fraud detection and security policy models are
analysed in less than a second; a larger model such as the
emergency response model is analysed in less than 2 minutes.

By successfully applying our modelling language and tool
to these problems, we have shown that:
• Claim 1: The RADAR modelling language is expressive

enough to model real-world requirements and architecture
decision problems;

• Claim 2: The RADAR analysis technique can be ap-
plied to real-world requirements and architecture decision
problems.

With respect to Claim 1, one limitation is that RADAR
only supports decisions with mutually exclusive options (cor-
responding to XOR links in feature diagrams); it does not
support decisions where multiple options can be selected at the
same time (corresponding to OR links in feature diagrams).
As a consequence, RADAR is not currently applicable to the
problem of requirements (or features) selection that has been
studied extensively in search-based requirements engineer-
ing [10], [40]. In future work, we intend to extend the language
to support decisions with non-mutually exclusive options.

A scalability analysis is presented in a separate report [38]:
RADAR’s run time and memory usage increase linearly with
the size of the design space, which itself increases expo-
nentially with the number of decisions. As a rule of thumb,
RADAR exhaustive search strategy can handle problems with
up to 10 decisions. Problems with larger design spaces will
need alternative heuristic search strategies [39].

B. Usefulness

RADAR is intended to support a requirements and architec-
ture decision method described in previous work [3]. We hope
the brief method overview in Section III will have sparked the
reader’s interest in the method’s usefulness.

As an illustration of the method’s output, Fig. 7 shows
the analysis results for our fraud detection problem. The first

Application Objectives Decisions Variables Parameters Design Space Run-time (sec)
Fraud detection 2 4 31 19 24 0
Security policy 2 2 23 11 6 0
Emergency response 2 10 117 137 6912 111
Satellite image processing 2 10 75 11 1024 3

TABLE I
RADAR APPLICATIONS: PROBLEM SIZES AND ANALYSIS RUN-TIMES

blocking policy processing type fraud detection method alert threshold FraudDetectionBenefit InvestigationLoad
block first continuous classifier low 414087 232479
block first continuous rule-based 402799 82709
block first continuous classifier medium 402516 52139
block first continuous classifier high 387394 22467

Fig. 7. Optimisation analysis results for the fraud detection model

optimisation objective is to maximise the expected benefit
of the fraud detection system where benefit is reduction in
financial loss due to fraud compared to the baseline set by
the current system. The second optimisation objective is to
minimise the fraud investigation load which here is defined as
the 95th percentile of the number of alerts:

Objective Max FraudDetectionBenefit =
EV(Benefit);

Objective Min InvestigationLoad =
percentile(NbrAlerts, 95);

Benefit = FinancialLossBaseLine − FinancialLoss;

The percentile means that 95 days out of 100, the number
of alerts will be below the investigation load.

The optimisation analysis results in Fig. 7 show that all
shortlisted solutions include the “block first” policy and “con-
tinuous” processing type. This means that, in our model,
these two options outperform the “investigate first” policy
and “batch” processing on both objectives. But once these
two options are selected, the shortlist includes all possible
combinations of fraud detection methods and alert thresholds;
each combination representing a different tradeoffs between
maximising fraud detection benefit and minimising investi-
gation load. To visualise such tradeoffs, RADAR generates
the graph in Fig. 8 plotting the objective values for the four
shortlised solutions (shown as squares at the top of the graph)
and all other non shortlisted ones (shown as circles).

The EVTPI for this problem is 220 and EVPPI for Av-
erageFraudValue is 122. All other parameters have EVTPI
below 2. This means that in this model, the only parameter
worth investigating further before deciding between the short-
listed solutions is average fraud value. Reducing uncertainty
about other parameters would bring no value to the decision.

This example illustrates that a RADAR analysis provides
useful feedback to system designers about which decisions
are better than others in their model, what objective values can
be attained with different designs, what tradeoffs can be made
between shortlisted solutions, what parameter uncertainty may
deserve additional data collection and analysis before making

Fig. 8. Pareto Front for the Financial Fraud Detection Prolem

their decision, and what parameter uncertainty does not matter
to their decision.

The ‘model validity’ threat. In our approach, the correct-
ness of the analysis results are relative to the validity of the
decision model. If the model’s equations are not valid, the
predicted objective values for the different solutions might be
wrong. In our four examples, although some equations and
parameters estimations are based on observed data, we have
mostly validated our models by checking that our equations
‘make sense’ rather than testing them empirically. We can not
therefore guarantee their validity.

One should observe that when making decisions about
systems that have yet to be built, it will in general not be
possible to validate all equations empirically because some
of the equations will refer to phenomena that cannot be
observed yet. It will only be possible to empirically validate
these equations once the system is in use. This is an inherent
difficulty of requirements and architecture decision problems.

With respect to the problem of model validation, our
approach needs to be compared with the state-of-the-art in
requirements and architecture decision making that, by relying
on fixed, predefined, and unfalsifiable equations, ignore the
issue of model validity. By contrast, RADAR models can be
criticised, reviewed, and modified to improve their validity.

Our approach also exposes a gap in requirements and
architecture decision making research: we currently lack auto-
mated techniques for validating requirements and architecture
decision models against observed data, and for automatically
calibrating and inferring such models from observed data.
Techniques from other fields could be used and adapted [18].

The ‘cost of modelling’ threat. Another possible problem
of our method is that the cost of elaborating the decision
models might outweigh its benefits. Our objective in designing
RADAR was to reduce the difficulty and cost of modelling
compared to existing approaches that require the model to be
developed in a general purpose programming language. We
have, however, not yet tested how easily people will be able
to use our language and tool.

With respect to cost-effectiveness, a potential benefit of
our approach is that it enables an iterative modelling and
analysis approach where information value analysis might be
used to decide what parts of an initially simple model (such
as the refactoring model in Section III) should be refined to
improve decisions. This will reduce modelling cost by helping
modellers develop fine-grained models only where needed and
leave other parts of the problem modelled at a coarse level of
granularity. We intend to develop and evaluate such iterative
approach in future work.

VI. RELATED WORK

RADAR’s relations to previous work in requirements and
architecture decision making [7], [8], [9], [10], goal-oriented
requirements engineering [14], [6], and our previous decision
method [3] have been described in Section I. Other quantita-
tive goal modelling techniques also rely on fixed predefined
equations and do not analyse uncertainty [41], [42], [43], [44].

In this paper, we have described RADAR as a lightweight
stand-alone tool. But in the future, RADAR could also be
used to extend existing goal-oriented requirements engineering
methods such as KAOS [1], iStar [41] and GRL [44] with a
quantitative Bayesian decision analysis layer.

Other quantitative models used in software engineering to
reason about uncertainty are Bayesian Belief Networks (BBN)
[19] and probabilistic transition systems [45].

A BBN is similar to a RADAR model that would contain
no OR-refinements equations. RADAR can thus be viewed as
an extension of BBN that include decision points (specified as
OR-refinements) to model a set of alternative system designs.
RADAR supports multi-objective optimisation and informa-
tion value analysis not supported by BBN analysis tools. In
its most common use, a BBN model specify dependencies
between discrete variables using probability tables, whereas
RADAR specify dependencies between continuous and Boolean
variables using arithmetic and Boolean expressions. BBN
tools, however, support more flexible multi-directional belief
propagations than RADAR’s bottom-up simulation and pro-
vides parameter and structure learning techniques not currently
supported in RADAR.

Probabilistic transition systems are convenient models to
describe and analyse dynamic behaviour of systems exhibiting

probabilistic and real-time characteristics. PRISM supports the
analysis of several types of probabilistic transition systems
[45]. EvoChecker extends PRISM with language constructs
that, like RADAR OR-refinements, support the specification
of design alternatives [46]. Like RADAR optimisation anal-
ysis, EvoChecker can then explore the space of alternatives
to find a set of Pareto-optimal solutions with respect to
optimisation objectives. However, the modelling paradigm
of PRISM/EvoChecker and RADAR are entirely different:
RADAR models are declarative equations best suited for mod-
elling stakeholders’ objectives, PRISM/EvoChecker models
are probabilistic transition systems best suited for modelling
dynamic behaviours. The two paradigms are complementary:
the result of the analysis of one or more probabilistic transition
systems can provide parameter estimations used as input for
a RADAR analysis. But RADAR can also be used before the
system can be described as a state transition system (for exam-
ples, as in the architecture refactoring problem in Section II).
In such situation, RADAR allows architects to model decisions
using familiar equations without having to elaborate more
complex probabilistic transition systems. RADAR’s information
value analysis can then be used to inform which parts of the
system, if any, require more detailed modelling.

VII. CONCLUSION

Many requirements and architecture decision problems deal
with uncertainty and conflicting stakeholders’ objectives. Sim-
ulating and optimising decisions using quantitative models is a
promising approach to support such decisions but the difficulty
of elaborating the model limits the adoption of such approach.

We have presented a new modelling language and analysis
tool, called RADAR, intended to facilitate the elaboration and
analysis of quantitative requirements and architecture decision
models. We have shown RADAR is applicable to real-world
problems, suggested it produces useful analysis results, and
argued that it improves model readability and lowers mod-
elling cost compared to decision models developed in a general
purpose programming language.

Unlike state-of-the-art requirements and architecture deci-
sion methods that rely on fixed, predetermined equations,
RADAR models can be reviewed and modified by decision
makers. RADAR’s analysis results, however, are only as good
as the decision model they are derived from. Future research
in requirements and architecture decision making should in-
vestigate techniques to support model validation with respect
to observed data, and model inference and calibration from
observed data.

ACKNOWLEDGMENT

David Stefan implemented RADAR’s method for computing
the expected value of partial perfect information [25]. Saheed
Busari’s research is supported by the The Petroleum Technol-
ogy Development Fund (PTDF) in Nigeria.

REFERENCES

[1] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[2] N. Rozanski and E. Woods, Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison Wesley,
2011.

[3] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information
value in software requirements and architecture,” in 36th International
Conference on Software Engineering (ICSE 2014), 2014, pp. 883–894.

[4] D. Kahneman, Thinking, Fast and Slow. Macmillan, 2011.
[5] J. Aranda and S. Easterbrook, “Anchoring and adjustment in software es-

timation,” in 10th European Software Engineering Conference and 13th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE 2013). ACM, 2005, pp. 346–355.

[6] W. Heaven and E. Letier, “Simulating and optimising design decisions
in quantitative goal models,” in 19th IEEE International Requirements
Engineering Conference (RE 2011). IEEE, 2011, pp. 79–88.

[7] G. Ruhe, Product Release Planning: Methods, Tools and Applications.
CRC Press, 2010.

[8] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and benefits
of architectural decisions,” in 23rd International Conference on Software
Engineering (ICSE 2001). IEEE Computer Society, 2001, pp. 297–306.

[9] M. Moore, R. Kazman, M. Klein, and J. Asundi, “Quantifying the
value of architecture design decisions: lessons from the field,” in 25th
International Conference on Software Engineering (ICSE 2003), 2003,
pp. 557–562.

[10] A. M. Pitangueira, R. S. P. Maciel, M. de Oliveira Barros, and A. S.
Andrade, “A systematic review of software requirements selection and
prioritization using SBSE approaches,” in 5th International Symposium
on Search Based Software Engineering (SSBSE 2013). Springer Berlin
Heidelberg, 2013, pp. 188–208.

[11] H. C. Benestad and J. E. Hannay, “A comparison of model-based and
judgment-based release planning in incremental software projects,” in
33rd International Conference on Software Engineering (ICSE 2011),
2011, pp. 766–775.

[12] A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Requirements Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on. IEEE, 2001, pp. 249–262.

[13] E. Letier, “Reasoning about agents in goal-oriented requirements engi-
neering,” Ph.D. dissertation, University of Louvain, 2001.

[14] E. Letier and A. van Lamsweerde, “Reasoning about partial goal satis-
faction for requirements and design engineering,” in 12th International
Symposium on the Foundation of Software Engineering (FSE 2004).
ACM, 2004, pp. 53–62.

[15] L. Duboc, E. Letier, D. S. Rosenblum, and T. Wicks, “A case study in
eliciting scalability requirements,” in 16th IEEE International Require-
ments Engineering Conference (RE 2008), 2008, pp. 247–252.

[16] L. Duboc, E. Letier, and D. S. Rosenblum, “Systematic elaboration of
scalability requirements through goal-obstacle analysis,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 1, pp. 119–140, 2013.

[17] D. J. Hand, C. Whitrow, N. M. Adams, P. Juszczak, and D. Weston,
“Performance criteria for plastic card fraud detection tools,” The Journal
of the Operational Research Society, vol. 59, no. 7, pp. 956–962, 2008.

[18] R. L. Winkler, An introduction to Bayesian inference and decision (2nd
Edition). Probabilistic Publishing, 2003.

[19] N. Fenton and M. Neil, Risk Assessment and Decision Analysis with
Bayesian Networks. CRC Press, 2012.

[20] A. O’Hagan, C. Buck, A. Daneshkhah, J. Eiser, P. Garthwaite, D. Jenkin-
son, J. Oakley, and T. Rakow, Uncertain Judgements: Eliciting Experts’
Probabilities. Wiley, 2006.

[21] D. Hubbard, How to Measure Anything: Finding the Value of Intangibles
in Business. Wiley, 2010.

[22] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux, “Feature diagrams: A
survey and a formal semantics,” in 14th IEEE International Require-
ments Engineering Conference (RE 2006). IEEE, 2006, pp. 139–148.

[23] R. Howard, “Information value theory,” IEEE Transactions on Systems
Science and Cybernetics, vol. 2, no. 1, pp. 22–26, 1966.

[24] R. A. Howard, Readings on the Principles and Applications of Decision
Analysis. Strategic Decisions Group, 1983, vol. 1.

[25] M. Sadatsafavi, N. Bansback, Z. Zafari, M. Najafzadeh, and C. Marra,
“Need for speed: an efficient algorithm for calculation of single-
parameter expected value of partial perfect information,” Value in
Health, 2013.

[26] D. Hubbard, “The IT measurement inversion,” CIO Enterprise Maga-
zine, 1999.

[27] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of user
preferences in search-based software engineering: a case study in
software product lines,” in 35th International Conference on Software
Engineering (ICSE 2013), 2013, pp. 492–501.

[28] J. Guo, E. Zulkoski, R. Olaechea, D. Rayside, K. Czarnecki, S. Apel, and
J. M. Atlee, “Scaling exact multi-objective combinatorial optimization
by parallelization,” in 29th ACM/IEEE International Conference on
Automated Software Engineering (ASE 2014), 2014, pp. 409–420.

[29] C. Henard, M. Papadakis, M. Harman, and Y. L. Traon, “Combining
multi-objective search and constraint solving for configuring large soft-
ware product lines,” in 37th IEEE International Conference on Software
Engineering (ICSE 2015), 2015, pp. 517–528.

[30] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-II,” Lecture notes in computer science, vol. 1917, pp. 849–858,
2000.

[31] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[32] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,

“Graphviz – open source graph drawing tools,” in International Sympo-
sium on Graph Drawing. Springer, 2001, pp. 483–484.

[33] T. Caulfield and D. Pym, “Improving security policy decisions with
models,” IEEE Security and Privacy Magazine, vol. 13, no. 5, pp. 34–
41, 2015.

[34] ——, “Modelling and simulating systems security policy,” in 8th In-
ternational Conference on Simulation Tools and Techniques, 2015, pp.
9–18.

[35] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A style-aware archi-
tectural middleware for resource-constrained, distributed systems,” IEEE
Transactions on Software Engineering, vol. 31, no. 3, pp. 256–272, 2005.

[36] N. Esfahani, S. Malek, and K. Razavi, “Guidearch: guiding the ex-
ploration of architectural solution space under uncertainty,” in 35th
International Conference on Software Engineering (ICSE 2013). IEEE,
2013, pp. 43–52.

[37] R. Kazman, J. Asundi, and M. Klien, “Making architecture design de-
cisions: An economic approach,” Carnegie Mellon University. Software
Engineering Institute, Tech. Rep. CMU/SEI-2002-TR-035, 2002.

[38] S. A. Busari and E. Letier, “Scalability analysis of the RADAR decision
support tool.” [Online]. Available: https://arxiv.org/abs/1702.02977

[39] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, 2012.

[40] Y. Zhang, “Multi-objective search-based requirements selection and
optimisation,” Ph.D. dissertation, University of London, 2010.

[41] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Reason-
ing with goal models,” in Conceptual Modeling – ER 2002. Springer,
2002, pp. 167–181.

[42] M. S. Feather and S. L. Cornford, “Quantitative risk-based requirements
reasoning,” Requirements Engineering, vol. 8, no. 4, pp. 248–265, 2003.

[43] A. van Lamsweerde, “Reasoning about alternative requirements
options,” in Conceptual Modeling: Foundations and Applications.
Springer, 2009, pp. 380–397.

[44] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and
E. Yu, “Evaluating goal models within the goal-oriented requirement
language,” International Journal of Intelligent Systems, vol. 25, no. 8,
pp. 841–877, 2010.

[45] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in International Conference on
Computer Aided Verification (CAV 2011). Springer Berlin Heidelberg,
2011, pp. 585–591.

[46] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis
of probabilistic models for quality-of-service software engineering,”
in 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2015). IEEE, 2015, pp. 319–330.

